Integrating Partial Model Knowledge in Model Free RL Algorithms

نویسندگان

  • Aviv Tamar
  • Dotan Di Castro
  • Ron Meir
چکیده

In reinforcement learning an agent uses online feedback from the environment and prior knowledge in order to adaptively select an effective policy. Model free approaches address this task by directly mapping external and internal states to actions, while model based methods attempt to construct a model of the environment, followed by a selection of optimal actions based on that model. Given the complementary advantages of both approaches, we suggest a novel algorithm which combines them into a single algorithm, which switches between a model based and a model free mode, depending on the current environmental state and on the status of the agent’s knowledge. We prove that such an approach leads to improved performance whenever environmental knowledge is available, without compromising performance when such knowledge is absent. Numerical simulations demonstrate the effectiveness of the approach and suggest its efficacy in boosting policy gradient learning.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrating a Partial Model into Model Free Reinforcement Learning

In reinforcement learning an agent uses online feedback from the environment in order to adaptively select an effective policy. Model free approaches address this task by directly mapping environmental states to actions, while model based methods attempt to construct a model of the environment, followed by a selection of optimal actions based on that model. Given the complementary advantages of...

متن کامل

Bayesian Reinforcement Learning: A Survey

Bayesian methods for machine learning have been widely investigated, yielding principled methods for incorporating prior information into inference algorithms. In this survey, we provide an in-depth review of the role of Bayesian methods for the reinforcement learning (RL) paradigm. The major incentives for incorporating Bayesian reasoning in RL are: 1) it provides an elegant approach to action...

متن کامل

Integrating Reinforcement Learning with Models of Representation Learning

Reinforcement learning (RL) shows great promise as a model of learning in complex, dynamic tasks, for both humans and artificial systems. However, the effectiveness of RL models depends strongly on the choice of state representation, because this determines how knowledge is generalized among states. We introduce a framework for integrating psychological mechanisms of representation learning tha...

متن کامل

Temporal Difference Models: Model-Free Deep RL for Model-Based Control

Model-free reinforcement learning (RL) is a powerful, general tool for learning complex behaviors. However, its sample efficiency is often impractically large for solving challenging real-world problems, even with off-policy algorithms such as Q-learning. A limiting factor in classic model-free RL is that the learning signal consists only of scalar rewards, ignoring much of the rich information...

متن کامل

Model-free POMDP optimisation of tutoring systems with echo-state networks

Intelligent Tutoring Systems (ITSs) are now recognised as an interesting alternative for providing learning opportunities in various domains. The Reinforcement Learning (RL) approach has been shown reliable for finding efficient teaching strategies. However, similarly to other human-machine interaction systems such as spoken dialogue systems, ITSs suffer from a partial knowledge of the interloc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011